Q1.

	1	(a)		scalar: magnitude only vector: magnitude and direction (allow scalar with direction) (allow 1 mark for scalar has no direction, vector has direction)	B1 B1	[2]	
		(b)		diagram has correct shape with arrows in correct directions resultant = $13.2 \pm 0.2 \text{ N}$ (allow 2 sig. fig) (for $12.8 \rightarrow 13.0$ and $13.4 \rightarrow 13.6$, allow 1 mark) (calculated answer with a correct sketch, allow max 4 marks) (calculated answer with no sketch – no marks)	M1 A1 A2	[4]	
				Tot	al	[6]	
Q2							
	4	(a)		(p =) mv	B1	5.5	
			1117	$E_{\mathbf{k}} = \frac{1}{2} m v^2$	B1		
				algebra leading to $E_k = \rho^2/2m$	M1 A0	[3]	
		(h)	m		C1	[3]	
		(b)	(i)	$\Delta \rho = 0.035 (4.5 + 3.5)$ OR $a = (4.5 + 3.5)/0.14$ = 0.28 N s = 57.1 m s ⁻²			
				force= Δ p/ Δ t (= 0.28/0.14) OR F = ma (= 0.035 x 575.1) (allow e.c.f. = 2.0 N) C1 A1		
				Note: candidate may add mg = 0.34 N to this answer, deduct 1 mark upwards	В1	[4]	
			(ii)	loss = $\frac{1}{2}$ x 0.035 (4.5 ² – 3.5 ²)	C1		
					A1	[2]	
	90	(c)		e.g. plate (and Earth) gain momentum			
				i.e. discusses a 'system'		B1	
				equal and opposite to the change for the ball i.e. discusses force/momentum		М1	
				so momentum is conserved i.e. discusses consequence		A1	[3]
				i.e. discusses consequence	Total	Αı	[12]
Q3	•						
	5	(a)	(i)	distance = $2\pi nr$		В1	
			(ii)	work done = $F \times 2 \pi nr$ (accept e.c.f.)		B1	[2]
		(b)		total work done = $2 \times F \times 2\pi nr$		В1	
				but torque $T = 2Fr$ hence work done = $T \times 2\pi n$		B1 A0	[2]
		72004N					(Z)
		(c)		power = work done/time (= $470 \times 2\pi \times 2400$)/60) = 1.2×10^5 W		A1	[2]
				- 12 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Total	SULECCIO.	[6]

Q4.

	3	(a) (i)	$\Delta E_p = mg\Delta h$ $= 0.602 \times 9.8 \times 0.086$		C1	
				= 0.51 J (do not allow g = 10, m = 0.600 or answer 0.50 J)		A1	[2]
			(ii)	$v^2 = (2gh =) 2 \times 9.8 \times 0.086 \text{ or } (2 \times 0.51)/0.602$ $v = 1.3 \text{ (m s}^{-1)}$		M1 A0	[1]
		(b)	$2 \times V = 602 \times 1.3$ (allow 600) $V = 390 \text{ m s}^{-1}$		C1 A1	[2]
		(c) (i)	$E_{\rm k} = \frac{1}{2}mv^2$		C1	
				= $\frac{1}{2} \times 0.002 \times 390^2$ = 152 J or 153 J or 150 J		A1	[2]
			(ii)	E _k not the same/changes or E _k before impact>E _k after/E _p after so must be inelastic collision (allow 1 mark for 'bullet embeds itself in block' etc.)	Ţ.	M1 A1	[2]
Q 5.							
	2	(a)		point at which whole weight of body may be considered to act		M1 A1	[2]
				sum of forces in any direction is zero sum of moments about any point is zero		B1 B1	[2]
		(b)	so F or:	r: If W have zero moment about P must have zero moment, i.e. pass through P pass through P, distance from P is zero for all forces	(M1)	M1 A1	[2]
				m of moments about P is zero	(A1)		
		(c)	(i) <i>F</i>	$-\cos \alpha = T\cos \beta$		B1	[1]
			(ii) V	$V = F\sin\alpha + T\sin\beta$		B1	[1]
			(iii) 2	$2W = 3T\sin\beta$		B1	[1]

Q6.

3 (a) (i)
$$v^2 = 2as$$
 $1.2^2 = 2 \times a \times 1.9$
 $a = 0.38 \text{ m s}^{-2}$

(ii) $F = ma$
 $= 42 \times 0.38$
 $= 16 \text{ N}$

(b) $power = Fv$
 $= 16 \times 1.2$
 $= 19 \text{ W}$

(c) (i) component = $42 \times 9.8 \times \sin 2.8$
 $= 20.1 \text{ N}$

(ii) accelerating force = $20.1 - 16 = 4.1 \text{ N}$
 $acceleration of trolley = $4.1 / 42 = 0.098 \text{ m s}^{-2}$
 $3.5 = \frac{1}{2} \times 0.098 \times t^2$
 $t = 8.5 \text{ s}$

(d) $either$ allows plenty of time to stop runaway trolley or trolley will travel faster (answer must be unambiguous when read in conjunction with question)

Q7.

2 (a) (i) k is the reciprocal of the gradient of the graph $k = (32 / (4 \times 10^{-2}) =) 800 \text{ N m}^{-1}$
 $k = (32 / (4 \times 10^{-2}) =) 800 \text{ N m}^{-1}$
(1) $either$ energy = average force × extension or $\frac{1}{2} \times 10^{-2}$
 $either$ energy = $\frac{1}{2} \times 10^{-2}$$

Q8.

(if only one trolley considered, or masses combined, allow max 1 mark)

2	(a)	ball moving in opposite direction (after collision)	B1	[1]
	(b)	(i) change in momentum = 1.2 (4.0 + 0.8)	C2	
		= 5.76 N s(allow 5.8)	A1	[3]
		(ii) force = $\Delta p / \Delta t$ or $m\Delta v / \Delta t$	C1	
		= 5.76 / 0.08 or 1.2 × 4.8 / 0.08	C1	
		= 72 N	A1	[3]
	(c)	5.76 = 3.6 × V	C1	
		V = 1.6 m s ⁻¹	A1	[2]
	(d)	either speed of approach = 4.0 m s ⁻¹ and		
		speed of separation = 2.4 m s ⁻¹	M1	
		not equal and so inelastic	A1	
		or kinetic energy before = 9.6 J and		
		kinetic energy after collision = 4.99 J	M1	101
		kinetic energy after is less / not conserved so inelastic	A1	[2]
29 .				
3	(a)	product of (magnitude of one) force and distance between forces reference to either perpendicular distance between forces	M1	
		or line of action of forces and perpendicular distance	A1	[2]
	(b)	(i) 90°	B1	[1]
			1207	
		(ii) $130 = F \times 0.45$ (allow e.c.f. for angle in (i))	C1	
		F = 290 N	A1	[2]
		(allow 1 mark only if angle stated in (i) is not used in (ii))		

Q10.

2	(a)	2.4	4s		A1	[1]
	(b)	red hei	cogn ight nswe	and (c) , allow answers as (+) or (-) hises distance travelled as area under graph line $= (\frac{1}{2} \times 2.4 \times 9.0) - (\frac{1}{2} \times 1.6 \times 6.0)$ $= 6.0 \text{ m} (allow 6 \text{ m})$ $= 15.6 \text{ scores 2 marks}$ or 10.8 or 4.8 scores 1 mark)	C1 C1 A1	[3]
		(ar	nswe	ative solution: $s = ut - \frac{1}{2}at^2$ = $(9 \times 4) - \frac{1}{2} \times (9 / 2.4) \times 4^2$ = 6.0 m er 66 scores 2 marks r 36 or 30 scores 1 mark)		
	(c)	(i)) ch		C1 A1	[2]
		(ii)) fo	성하다	C1	
				= 10.3/3.5/0.08 = 2.9N	A1	[2]
	(d)	(i)	2.9	9N	A1	[1]
		(ii)	g	= weight / mass	C1	
				= 2.9 / 0.78 = 3.7 m s ⁻²	A1	[2]
Q11.	•					
3	(a)	or		energy (stored)/work done represented by area under graph energy = <u>average</u> force × extension = ½ × 180 × 4.0 × 10 ⁻² = 3.6 J		[3]
	(b)	(i)	or	her momentum before release is zero so sum of momenta (of trolleys) after release is zero force = rate of change of momentum (M1) force on trolleys equal and opposite (A1) impulse = change in momentum (M1)	M1 A1	
			or	impulse on each equal and opposite (A1)		[2]
		(ii)	1	$M_1V_1 = M_2V_2 \qquad \dots$	B1	[1]
			2	$\underline{\underline{E}} = \frac{1}{2} M_1 V_1^2 + \frac{1}{2} M_2 V_2^2$	В1	[1]
		(iii)	1	$E_{\rm K} = \frac{1}{2}mv^2$ and $p = mv$ combined to give	M1 A0	[1]
				m smaller, E _K is larger because p is the same/constant so trolley B	M1 A0	[1]

Q12.

3	(a)	(i)	force is rate of change of momentum	B1	[1]
		(ii)	force on body A is equal in magnitude to force on body B (from A)	A1	[3]
	(b)	(i)	1 F _A = -F _B	B1 B1	[1] [1]
		(ii)	$\Delta p = F_{A} t_{A} = -F_{B} t_{B} \dots$	B1	[1]
012	(c)	fina	ph: momentum change occurs at same times for both spheres	B1 M1 A1	[3]
Q13.				Б.	
2	(a)		resultant force/sum of forces zero resultant moment/torque/sum of moments/torques zero	B1 B1	[2
	(b)) (i)	each force is represented by the side of a triangle/by an arrow in magnitude and direction arrows joined, head to tail (could be shown on a sketch diagram)	M1 A1 B1	[3
		(ii)	if the triangle is 'closed' (then the forces are in equilibrium)	В1	[1
	(c)	T ₁	angle drawn with correct shape (incorrect arrows loses this mark) = $5.4 \pm 0.2 \text{N}$ = $4.0 \pm 0.2 \text{N}$	B1 B1 B1	[3
	(d)	23 BI	ces in strings would be horizontal b) no vertical force to support the weight	B1 B1	[2

Q14.

	3	 (a) point where the weight of an object / gravitational force may be considered to act 							M1 A1	
		(b)	pro	duct	of the force and th	ne <u>perpendic</u>	cular distance (to the pivo	t)	В1	[1]
		(c)	(i)	1.	sum / net / resulta	ant force is a	zero		В1	
				2.	net / resultant mo sum of clockwise		sum of anticlockwise mo	ments	В1	[2]
			(ii)	w	0.2 = 80 × 0.5 + = 40 + 91 = 655 N w 2/3 for one error r		ut 0/3 if two errors)		C1 C1 A1	[3]
		(iii)		e pivot to left				(M1)	
					s greater clockwis clockwise momen		smaller		(A1)	
				mov	e W to right s smaller anticloc	kwise mome	ent		(M1) (A1)	[2]
Q15.										
2	(a)	mome		nts	oment = zero / su rce = 0	m of clockw	rise moments = sum of ar	nticlockwise	B1 B1	[2]
	(b)		1905 Harris		orientation correc ect / labelled	t and forces	labelled and arrows corr	ect	M1 A1	[2]
	(c)	(i)	T		8° = W T = 520 / cos18°	= 547 N	Scale diagram: ± 20 N		C1 A1	[2]
		(ii)		= T s = 16	sin18° 9 N		± 20 N		A1	[1]
	(d)				hence $\cos heta$ is sn	naller, T = V	VI cos θ		M1 A0	[1]

Q16.

Q18.

```
3 (a) weight = m \times g
                       = 130.5 × 9.81 = 1280 N
                                                                                                             A1 [1]
          (b) (i) F = ma
                    T - 1280 = 130.5 \times 0.57
                                                                                                             C1
                    T = 1280 + 74.4 = 1350 \text{ N}
                                                                                                             A1
                                                                                                                    [2]
               (ii) 1280 N
                                                                                                             A1
                                                                                                                   [1]
          (c) 1240 - 1280 = 130.5 \times a
                                                                                                             C1
                            a = (-) 0.31 \,\mathrm{m\,s^{-2}}
                                                                                                                    [2]
                                                                                                             A1
          (d) (i) 1. 3.5 s
                                                                                                             A1
                                                                                                                   [1]
                    2. 6.5 s
                                                                                                             A1
                                                                                                                   [1]
                                                                                                           M1
     (ii) basic shape
           correct points
                                                                                                           A1
                                                                                                                   [2]
Q17.
    2
                                                                                                          C1
        (a) (i) v = u + at
                      = 4.23 + 9.81 \times 1.51
                                                                                                          M1
                      = 19.0(4) \text{ m s}^{-1} (Allow 2 s.f.)
                                                                                                          A0
                                                                                                                    [2]
                  (Use of -g \max 1/2. Use of g = 10 \max 1/2. Allow use of 9.8. Allow 19 ms<sup>-1</sup>)
             (ii) either s = ut + \frac{1}{2}at^2 (or v^2 = u^2 + 2as etc.)
                            = 4.23 \times 1.51 + 0.5 \times 9.81 \times (1.51)^{2}
                                                                                                          C1
                            = 17.6 \text{ m} (or 17.5 m)
                                                                                                          A1
                                                                                                                    [2]
                            (Use of -g here wrong physics (0/2))
                                                                                                          C1
         (b) (i) F = \Delta P / \Delta t need idea of change in momentum
                      = [0.0465 \times (18.6 + 19)] / 12.5 \times 10^{-3}
                                                                                                          C1
                                                                                                          A1
                      = 140 N
                  (Use of - sign max 2/4. Ignore -ve sign in answer)
                  Direction: upwards
                                                                                                          B1
                                                                                                                    [4]
             (ii) h = \frac{1}{2} \times (18.6)^2 / 9.81
                                                                                                          C1
                      = 17.6 \text{ m} (2 \text{ s.f.} -1)
                                                                                                          A1
                                                                                                                    [2]
                  (Use of 19 m s<sup>-1</sup>, 0/2 wrong physics)
         (c) either
                       kinetic energy of the ball is not conserved on impact
                       speed before impact is not equal to speed after hence inelastic
                                                                                                          В1
                                                                                                                    [1]
```

3	(a) A body continues at rest or constant velocity unless acted on by a resultant (external) force					В1	
	(b)	(i)		tant velocity/zero acceleration and therefore no resultant force sultant force (and no resultant torque) hence in equilibrium	M1 A1		[2]
		(ii)		conent of weight = 450 × 9.81 × sin 12° (= 917.8) on = 650 + 450 g sin12° = (650 + 917.8) = 1600 (1570)N	C1 C1 A1		[3]
	(iii)			one against frictional force or friction between log and slope power greater than the gain in PE / s	M1 A1		[2]
Q19							
1	(a)	displacement is a vector, distance is a scalar displacement is straight line between two points / distance is sum of lengths moved / example showing difference (either one of the definitions for the second mark)					
	(b)			continues at rest or at constant velocity unless acted on by a result force	tant	В1	[1]
	(c)	 (i) sum of T₁ and T₂ equals frictional force these two forces are in opposite directions (allow for 1/2 for travelling in straight line hence no rotation / no resultant torque) 				B1 B1	[2]
		(ii)	(scale vector triangle with correct orientation / vector triangle with corrected at the correct orientation both with arrows scale given or mathematical analysis for tensions	rect	B1 B1	[2]
				$T_1 = 10.1 \times 10^3 (\pm 0.5 \times 10^3) \text{N}$ $T_2 = 16.4 \times 10^3 (\pm 0.5 \times 10^3) \text{N}$		A1 A1	[2]

Q20.

2	(a)	a) weight = 452 × 9.81						
			pponent down the slope = 452 × 9.81 × sin 14°	M1	10202			
		= 1	072.7 = 1070 N	A0	[1]			
	(b)	m	F = ma	C1				
	,-,	1-7	$T - (1070 + 525) = 452 \times 0.13$	C1				
			T = 1650 (1653.76)N any forces missing 1/3	A1	[3			
		m	1. $s = ut + \frac{1}{2}at^2$ hence $10 = 0 + \frac{1}{2} \times 0.13t^2$	C1				
		(,	$t = [(2 \times 10) / 0.13]^{1/2} = 12.4 \text{ or } 12\text{ s}$	A1	[2			
			0					
			2. $v = (0 + 2 \times 0.13 \times 10)^{1/2} = 1.61 \text{ or } 1.6 \text{ m s}^{-1}$	A1	[1]			
	/- \	-4	inhá linn frans ába animin	D4				
	(C)		ight line from the origin down to zero velocity in short time compared to stage 1	B1 B1				
		line less steep negative gradient						
		final velocity larger than final velocity in the first part – at least 2×						
Q21.								
•	/- \							
2	(a)	mass is the property of a body resisting changes in motion / quantity of matter in a body / measure of inertia to changes in motion						
			whi is the force due to the grow italianal field/force due to growith.					
			ght is the force due to the gravitational field/force due to gravity ravitational force	В1	[2]			
		0.000			5100 N			
		Allo	w 1/2 for 'mass is scalar weight is vector'					
	/L.\	<i>(</i> 1)		D.4				
	(D)	(1)		B1 B1	[2]			
					1-1			
		(ii)		C1				
				C1				
			θ = 44.(1)° scale drawing allow ± 2° use of cos or tan 1/3 only	A1	[3]			
			use of cos of lant 1/3 offiny					
			2. $T = 69 \cos \theta$	C1				
			= $49.6 / 50 \text{N}$ scale drawing $50 \pm 2 (2/2) 50 \pm 4 (1/2)$	A1	[2]			
			correct answers obtained using scale diagram or triangle of forces will score					
			full marks					
			cos in 1. then sin in 2. (2/2)					

Q22.

2	(a)	ford	ce = rate of change of momentum	A1	[1]		
	(b)	(i)	horizontal line on graph from $t=0$ to t about $2.0 \text{ s} \pm \frac{1}{2}$ square, $a>0$ horizontal line at 3.5 on graph from 0 to 2 s vertical line at $t=2.0 \text{ s}$ to $a=0$ or sharp step without a line horizontal line from $t=2 \text{ s}$ to $t=4 \text{ s}$ with $a=0$	M1 A1 B1 B1	[4]		
	(ii)		straight line and positive gradient starting at (0,0) finishing at (2,16.8) horizontal line from 16.8 from 2.0 to 4.0				
Q23.							
3	(a)		point where (all) the weight (of the body) onsidered / seems to act	M1 A1	[2]		
	(b)	(i)	vertical component of T (= 30 cos 40°) = 23 N	A1	[1]		
		(ii)	the \underline{sum} of the clockwise moments about a \underline{point} equals the \underline{sum} of the anticlockwise moments (about the same point)	В1	[1]		
	((iii)	(moments about A): 23×1.2 (27.58) = $8.5 \times 0.60 + 1.2 \times W$ working to show $W = 19$ or answer of 18.73 (N)	M1 M1 A1	[3]		
	(iv)	(M = W/g = 18.73/9.81 =) 1.9(09) kg	A1	[1]		
(0	u	owar	quilibrium) resultant force (and moment) = 0 of force does not equal downward force / horizontal component of T of the component of the compon	B1 B1	[2]		
Q24.							
3	(a)	(i)	the total momentum of a system (of interacting bodies) remains constant provided there are no resultant external forces / isolated system	M1 A1	[2]		
		(ii)	elastic: total kinetic energy is conserved, inelastic: loss of kinetic energy [allow elastic: relative speed of approach equals relative speed of separation]	В1	[1]		

Q28.

(b)	(i)	final mor	om: $4.2 \times 3.6 - 1.2 \times 1.5$ (= $15.12 - 1.8 = 13.3$) m: $4.2 \times v + 1.5 \times 3$ $3 - 4.5$) / $4.2 = 2.1 \text{m s}^{-1}$	C1 C1 A1	
	(ii)	final kine initial KE provided	tetic energy = $\frac{1}{2} m_A (v_A)^2 + \frac{1}{2} m_B (v_B)^2$ = 27.21 + 1.08 = 28(.28) etic energy = 9.26 + 6.75 = 16 is not the same as final KE hence inelastic If final KE less than initial KE terms of relative speeds of approach and separation	M1 M1 A1	
Q25.					
2	(a)		mass: measure of body's resistance/inertia to changes in velocity/motion		
			weight = mg/scalar and vector	B1	[3]
	(b)		e.g. where gravitational field strength changes (change) in fluid surrounding body 1 each, max 2	B2	[2]
Q26.					
3	(a)	į	force x perpendicular distance		[2]
	(b)	ĺ	no resultant force (in any direction)no resultant moment (about any point)		[2]
	(c)	(i)	correct direction in both	B1	[1]
		(ii)1	moment = 150 x 0.3 = 45 N m (1 sig. fig1)	A1	
		(ii)2	torque = 45 N m i.e. same is (i)	A1	
		(ii)3	45 = 0.12 x T T = 375 N		[4]
Q27.					
2	(4	a)	point where whole weight of body (allow mass) may be considered to act (do not allow 'acts')	M1 A1	[2]
	(1	b)	when CG below pivot, weight acts through the pivot (so) weight has no turning effect about pivot	B1 B1	[2]

12

3	(a)		change in velocity/time (taken)		В	31	[1]
	(b)		velocity is a vector/velocity has magnitude & direction direction changing so must be accelerating				[2]
	(c)		either 6.1 × cos35 = 4.99 N so no resultant vertical force 6.1 sin35 = 3.5 N horizontally	or scale shown triangle of correct shape resultant = $3.5 \pm 0.2 \text{ N}$ horizontal $\pm 3^{\circ}$	e B	31 31 31 31	[4]
			allow answer based on centripetal force resultant is centripetal force (which is he resultant is horizontal component of ten 6.1 sin35 = 3.5 N horizontally	orizontal)	(1	B1) B1) B1) B1)	
Q29.							
4	(a)	(i)	use of tangent at time $t = 0$ acceleration = 42 ± 4 cm s ⁻²		B1 A1	[2]	
		(ii)	use of area of loop distance = 0.031 ± 0.001 m allow 1 mark if 0.031 ± 0.002 m)		B1 B2	[3]	l
	(b)	(i)	F = ma = 0.93 × 0.42 {allow e.c.f. from (a)(i)} = 0.39 N		C1 A1	[2]	ļ
		(ii)	force reduces to zero in first 0.3 s then increases again in next 0.3 s in the opposite direction		B1 M1 A1	[3]	l

Q30.

3	(a)		helium nucleus OR contains two protons and two neutrons	В1	[1]
	(b)		kinetic energy = $\frac{1}{2}mv^2$ $\frac{1}{2} \times 4 \times 1.66 \times 10^{-27} \times v^2 = 1.07 \times 10^{-12}$ $v = 1.8 \times 10^7 \text{ m s}^{-1}$	C1 A1 A0	[2]
	(c)	(i) (ii)	sum of momenta (in any direction) is constant / total momentum is constant in a closed system / no external force momentum of francium (= 0) = momentum of α + momentum of astatine $204 \times V = 4 \times 1.8 \times 10^7$	M1 A1 C1 C1	[2]
			$V = 3.5 \times 10^5$ m s ⁻¹ (nuclei incorrectly identified, 0/3 nuclei correctly identified but incorrect masses, -1 each error)	A1	[3]
	(d)		another particle / photon is emitted at an angle to the direction of the α -particle (allow 1 mark for 'Francium nucleus is not stationary')	M1 A1	[2]
Q31.					
3	(momei couple penali	of force from pivot / axis / point	M1 A1 M1 A1	[4]
	(b) (× 4.8 = (12 × 84) + (2.5 × 72) = 250 N (248 N)	C1 A1	[2]
	((ii) eit	ther friction at the pivot or small movement of weights	B1	[1]
Q32.					
3	(a)		either sum / total momentum (of system of bodies) is constant or total momentum before = total momentum after for an isolated system / no (external) force acts on system		[2]
			zero momentum before / after decayso α-particle and nucleus D must have momenta in opposite directions		[2]
	(b)		kinetic energy = $\frac{1}{2} mv^2$ 1.0 × 10 ⁻¹² = $\frac{1}{2}$ × 4 × $\frac{1.66}{1.00}$ × 10 ⁻²⁷ × v^2 $v = 1.7 \times 10^7 \text{ m s}^{-1}$	M1	[2]
			$1.7 \times 10^7 \times 4u = 216u \times V$ $V = 3.1 \times 10^5 \text{ m s}^{-1}$	C1 A1	[2]

	(c) $(1.7 \times 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $deceleration / a = 3.2 \times 10^{15} \text{ m s}^{-2}$ (accept calculation based on calculating $F = 2.22 \times 10^{-11} \text{ N}$ and then use of $F = ma$)					
					По	tal: 10
Q33.						
3	(a)	fore	ce = rate of change of momentum	(allow symbols if defined)	В1	[1]
	(b)	(i)	$\Delta \rho = 140 \times 10^{-3} \times (5.5 + 4.0)$ = 1.33 kg m s ⁻¹		C1 A1	[2]
		(ii)	force = 1.33 / 0.04 = 33.3 N		M1 A0	[1]
	(c)	(i)	taking moments about B (33 × 75) + (0.45 × g × 25) = F_A × 20 F_A = 129 N		C1 C1 A1	[3]
		(ii)	F _B = 33 + 129 + 0.45 <i>q</i> = 166 N		C1 A1	[2]
Q34.						
3	(a)		nt at which (whole) weight (of body) bears / seems to act (for mass need	t Tours of the color of the second of the color of the co	M1 A1	
	(b)	(i)	point C shown at centre of rectangle :	± 5 mm	В1	[1]
		(ii)	arrow vertically downwards, from C w margin of error as in (b)(i)	rith arrow starting from the same	В1	[1]
	(c)	(i)	reaction / upwards / supporting / norm friction force(s) at the rod	nal reaction force	M1 M1 A1	Ì
		(ii)	comes to rest with (line of action of) vallow C vertically below the rod so that weight does not have a mome		B1 B1	

Q35.

2	(a)		que is the product of one of the forces and the distance between forces perpendicular distance between the forces	M1 A1	
	(b)	(i)	torque = 8 × 1.5 = 12Nm	A1	[1]
		(ii)	there is a resultant torque / sum of the moments is not zero (the rod rotates) and is not in equilibrium	M1 A1	
	(c)	(i)	B × 1.2 = 2.4 × 0.45 B = 0.9(0) N	C1 A1	
		(ii)	A = 2.4 - 0.9 = 1.5 N / moments calculation	A1	[1]
Q36.					
2	2 (a) () force is rate of change of momentum	В1	[1]
		(i) work done is the product of the force and the distance <u>moved</u> in the direction of the force	В1	[1]
	(b) (W = Fs or W = mas or W = $m(v^2 - u^2)/2$ or W = force × distance s	A1	[1]
		(ii	as = $(v^2 - u^2) / 2$ any subject $W = mas$ hence $W = m(v^2 - u^2) / 2$ RHS represents terms of energy or with $u = 0$ KE = $\frac{1}{2}mv^2$	M1 M1 A1	[3]
	(c) (i) work done = $\frac{1}{2} \times 1500 \times [(30)^2 - (15)^2]$ (=506250) distance = WD / F = 506250 / 3800 = 133 m or F = ma a = 2.533 (m s ⁻²) $v^2 = u^2 + 2as$ s = 133 m	C1 A1 C1 A1	[2]
		(i) the change in kinetic energy is greater or the work done by the force has to be greater, hence distance is greater (for same force)	A1	[1]
			allow: same acceleration, same time, so greater average speed and greater distance		

Q37.

1	(a)	sca	lar ha	s magnitude/size, vector has magnitude/size and direction	В1	[1]	
	(b)			tion, momentum, weight ach addition or omission but stop at zero)	В2	[2]	
	(c)	(i)	horiz	contally: 7.5 cos 40° / 7.5 sin 50° = 5.7(45) / 5.75 not 5.8 N	A1	[1]	
		(ii)	verti	cally: $7.5 \sin 40^{\circ} / 7.5 \cos 50^{\circ} = 4.8(2) \text{N}$	A1	[1]	
	(d)	either correct shaped triangle correct labelling of two forces, three arrows and two angles or correct resolving: $T_2\cos 40^\circ = T_1\cos 50^\circ$ $T_1\sin 50^\circ + T_2\sin 40^\circ = 7.5$ $T_1 = 5.7(45) \text{ (N)}$ $T_2 = 4.8 \text{ (N)}$ (allow $\pm 0.2 \text{ N for scale diagram)}$				[4]	
Q38.							
1	(a)	(i)		celeration = change in velocity / time (taken) acceleration = rate of change of velocity		В1	[1]
		(ii)	a b	ody continues at constant velocity unless acted on by a resultant force		В1	[1]
	(b) (i)		tance is represented by the area under graph tance = $\frac{1}{2}$ × 29.5 × 3 = 44.3 m (accept 43.5 m for 29 to 45 m for 30)		C1 A1	[2]
		(ii)	fric	ultant force = weight – frictional force tional force increases with speed start frictional force = 0 / at end weight = frictional force		B1 B1 B1	[3]
		(iii)	1.	frictional force increases		В1	[1]
			2.	frictional force (constant) and then decreases		В1	[1]
		(iv)	1.	acceleration = $(v_2 - v_1) / t = (20 - 50) / (17 - 15)$ = $(-)$ 15 m s ⁻²		C1 A1	[2]
			2.	W - F = ma $W = 95 \times 9.81 (= 932)$ $E = (95 \times 15) + 932 = 2400 (2360) (2357) N$		C1 C1	[3]

Q39.

2 (a) (resultant) force = rate of change of momentum / allow proportional to or change in momentum / time (taken) B1 [1] **(b) (i)** $\Delta p = (-)65 \times 10^{-3} (5.2 + 3.7)$ C1 = (-) 0.58 N sA1 [2] (ii) $F = 0.58/7.5 \times 10^{-3}$ = 77(.3)NA1 [1] (c) (i) 1. force on the wall from the ball is equal to the force on ball from the wall M1 but in the opposite direction [2] A1 (statement of Newton's third law can score one mark) 2. momentum change of ball is equal and opposite to momentum change of the wall / change of momentum of ball and wall is zero B1 [1] (ii) kinetic energy (of ball and wall) is reduced / not conserved so inelastic B1 [1] (Allow relative speed of approach does not equal relative speed of separation.) Q40. (a) (i) accelerations (A to B and B to C) are same magnitude **B1** accelerations (A to B and B to C) are opposite directions **B1** or both accelerations are toward B (A to B and B to C) the component of the weight down the slope provides the acceleration **B1** [3] (ii) acceleration = g sin15° C1 $s = 0 + \frac{1}{2} at^2$ $s = 0.26 / \sin 15^{\circ} = 1.0$ C1 $t^2 - \frac{1.0 \times 2}{9.8 \times \sin 15^\circ}$ $t = 0.89 \,\mathrm{s}$ A1 [3] (iii) $v = 0 + a \sin 15t$ or $v^2 = 0 + 2a \sin 15 \times 1.0$ $v = 2.26 \,\mathrm{m \, s^{-1}}$ A1 [2] (using loss of GPE = gain KE can score full marks) (b) loss of GPE at A = gain in GPE at C or loss of KE at B = gain in GPE at C **B1** $h_1 = h_2 = 0.26 \,\mathrm{m} \,\mathrm{or} \, \frac{1}{2} \, mv^2 = mgh$ $h_2 = 0.5 \times (2.26)^2 / 9.81 = 0.26 \,\mathrm{m}$ $x = 0.26 / \sin 30^{\circ} = 0.52 \text{ m}$ A1 [2]

Q41.

4	(a)	torque of a couple = <u>one</u> of the forces / a force × distance multiplied by the <u>perpendicular distance between the forces</u>				
	(b)	(i)	weight at P (vertically) down	В1		
			normal reaction OR contact force at (point of contact with the pin) P (vertically) up	В1	[2]	
		(ii)	torque = 35 × 0.25 (or 25) × 2 = 18 (17.5) Nm	C1 A1	[2]	
	į	(iii)	the two 35N forces are equal and opposite and the weight and the upward / contact / reaction force are equal and opposite $$	В1	[1]	
		(iv)	not in equilibrium as the (resultant) torque is not zero	В1	[1]	